Solve for x
x\leq 4
Graph
Share
Copied to clipboard
\frac{16}{3}-\frac{1}{3}x\geq x
Divide each term of 16-x by 3 to get \frac{16}{3}-\frac{1}{3}x.
\frac{16}{3}-\frac{1}{3}x-x\geq 0
Subtract x from both sides.
\frac{16}{3}-\frac{4}{3}x\geq 0
Combine -\frac{1}{3}x and -x to get -\frac{4}{3}x.
-\frac{4}{3}x\geq -\frac{16}{3}
Subtract \frac{16}{3} from both sides. Anything subtracted from zero gives its negation.
x\leq -\frac{16}{3}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}. Since -\frac{4}{3} is negative, the inequality direction is changed.
x\leq \frac{-16\left(-3\right)}{3\times 4}
Multiply -\frac{16}{3} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{48}{12}
Do the multiplications in the fraction \frac{-16\left(-3\right)}{3\times 4}.
x\leq 4
Divide 48 by 12 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}