Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}\times \frac{m-2}{m+2}
Divide \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} by \frac{m-4}{2m+4} by multiplying \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} by the reciprocal of \frac{m-4}{2m+4}.
\frac{2\left(m-4\right)\left(-m-4\right)\left(m+2\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Factor the expressions that are not already factored in \frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}.
\frac{-2\left(m-4\right)\left(m+2\right)\left(m+4\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Extract the negative sign in -4-m.
\frac{-2\left(m+2\right)}{m-2}\times \frac{m-2}{m+2}
Cancel out \left(m-4\right)\left(m+4\right) in both numerator and denominator.
\frac{-2\left(m+2\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}
Multiply \frac{-2\left(m+2\right)}{m-2} times \frac{m-2}{m+2} by multiplying numerator times numerator and denominator times denominator.
-2
Cancel out \left(m-2\right)\left(m+2\right) in both numerator and denominator.