Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(16-25x^{2}\right)\left(9x^{2}-y^{2}\right)}{\left(3x+y\right)\left(4x-5x^{2}\right)}
Divide \frac{16-25x^{2}}{3x+y} by \frac{4x-5x^{2}}{9x^{2}-y^{2}} by multiplying \frac{16-25x^{2}}{3x+y} by the reciprocal of \frac{4x-5x^{2}}{9x^{2}-y^{2}}.
\frac{\left(-5x-4\right)\left(5x-4\right)\left(3x+y\right)\left(3x-y\right)}{x\left(-5x+4\right)\left(3x+y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-5x-4\right)\left(-5x+4\right)\left(3x+y\right)\left(3x-y\right)}{x\left(-5x+4\right)\left(3x+y\right)}
Extract the negative sign in -4+5x.
\frac{-\left(-5x-4\right)\left(3x-y\right)}{x}
Cancel out \left(-5x+4\right)\left(3x+y\right) in both numerator and denominator.
\frac{15x^{2}-5xy+12x-4y}{x}
Expand the expression.
\frac{\left(16-25x^{2}\right)\left(9x^{2}-y^{2}\right)}{\left(3x+y\right)\left(4x-5x^{2}\right)}
Divide \frac{16-25x^{2}}{3x+y} by \frac{4x-5x^{2}}{9x^{2}-y^{2}} by multiplying \frac{16-25x^{2}}{3x+y} by the reciprocal of \frac{4x-5x^{2}}{9x^{2}-y^{2}}.
\frac{\left(-5x-4\right)\left(5x-4\right)\left(3x+y\right)\left(3x-y\right)}{x\left(-5x+4\right)\left(3x+y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-5x-4\right)\left(-5x+4\right)\left(3x+y\right)\left(3x-y\right)}{x\left(-5x+4\right)\left(3x+y\right)}
Extract the negative sign in -4+5x.
\frac{-\left(-5x-4\right)\left(3x-y\right)}{x}
Cancel out \left(-5x+4\right)\left(3x+y\right) in both numerator and denominator.
\frac{15x^{2}-5xy+12x-4y}{x}
Expand the expression.