Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18\times \frac{16}{64.2}=x^{2}
Multiply both sides of the equation by 18.
18\times \frac{160}{642}=x^{2}
Expand \frac{16}{64.2} by multiplying both numerator and the denominator by 10.
18\times \frac{80}{321}=x^{2}
Reduce the fraction \frac{160}{642} to lowest terms by extracting and canceling out 2.
\frac{480}{107}=x^{2}
Multiply 18 and \frac{80}{321} to get \frac{480}{107}.
x^{2}=\frac{480}{107}
Swap sides so that all variable terms are on the left hand side.
x=\frac{4\sqrt{3210}}{107} x=-\frac{4\sqrt{3210}}{107}
Take the square root of both sides of the equation.
18\times \frac{16}{64.2}=x^{2}
Multiply both sides of the equation by 18.
18\times \frac{160}{642}=x^{2}
Expand \frac{16}{64.2} by multiplying both numerator and the denominator by 10.
18\times \frac{80}{321}=x^{2}
Reduce the fraction \frac{160}{642} to lowest terms by extracting and canceling out 2.
\frac{480}{107}=x^{2}
Multiply 18 and \frac{80}{321} to get \frac{480}{107}.
x^{2}=\frac{480}{107}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{480}{107}=0
Subtract \frac{480}{107} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{480}{107}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{480}{107} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{480}{107}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{1920}{107}}}{2}
Multiply -4 times -\frac{480}{107}.
x=\frac{0±\frac{8\sqrt{3210}}{107}}{2}
Take the square root of \frac{1920}{107}.
x=\frac{4\sqrt{3210}}{107}
Now solve the equation x=\frac{0±\frac{8\sqrt{3210}}{107}}{2} when ± is plus.
x=-\frac{4\sqrt{3210}}{107}
Now solve the equation x=\frac{0±\frac{8\sqrt{3210}}{107}}{2} when ± is minus.
x=\frac{4\sqrt{3210}}{107} x=-\frac{4\sqrt{3210}}{107}
The equation is now solved.