Solve for x
x=-45
x=5
Graph
Share
Copied to clipboard
\frac{16}{5}x^{2}=\frac{1296}{5}-\frac{1152}{25}x+\frac{256}{125}x^{2}
Use the distributive property to multiply \frac{36}{5}-\frac{16}{25}x by 36-\frac{16}{5}x and combine like terms.
\frac{16}{5}x^{2}-\frac{1296}{5}=-\frac{1152}{25}x+\frac{256}{125}x^{2}
Subtract \frac{1296}{5} from both sides.
\frac{16}{5}x^{2}-\frac{1296}{5}+\frac{1152}{25}x=\frac{256}{125}x^{2}
Add \frac{1152}{25}x to both sides.
\frac{16}{5}x^{2}-\frac{1296}{5}+\frac{1152}{25}x-\frac{256}{125}x^{2}=0
Subtract \frac{256}{125}x^{2} from both sides.
\frac{144}{125}x^{2}-\frac{1296}{5}+\frac{1152}{25}x=0
Combine \frac{16}{5}x^{2} and -\frac{256}{125}x^{2} to get \frac{144}{125}x^{2}.
\frac{144}{125}x^{2}+\frac{1152}{25}x-\frac{1296}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{1152}{25}±\sqrt{\left(\frac{1152}{25}\right)^{2}-4\times \frac{144}{125}\left(-\frac{1296}{5}\right)}}{2\times \frac{144}{125}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{144}{125} for a, \frac{1152}{25} for b, and -\frac{1296}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1152}{25}±\sqrt{\frac{1327104}{625}-4\times \frac{144}{125}\left(-\frac{1296}{5}\right)}}{2\times \frac{144}{125}}
Square \frac{1152}{25} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1152}{25}±\sqrt{\frac{1327104}{625}-\frac{576}{125}\left(-\frac{1296}{5}\right)}}{2\times \frac{144}{125}}
Multiply -4 times \frac{144}{125}.
x=\frac{-\frac{1152}{25}±\sqrt{\frac{1327104+746496}{625}}}{2\times \frac{144}{125}}
Multiply -\frac{576}{125} times -\frac{1296}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1152}{25}±\sqrt{\frac{82944}{25}}}{2\times \frac{144}{125}}
Add \frac{1327104}{625} to \frac{746496}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1152}{25}±\frac{288}{5}}{2\times \frac{144}{125}}
Take the square root of \frac{82944}{25}.
x=\frac{-\frac{1152}{25}±\frac{288}{5}}{\frac{288}{125}}
Multiply 2 times \frac{144}{125}.
x=\frac{\frac{288}{25}}{\frac{288}{125}}
Now solve the equation x=\frac{-\frac{1152}{25}±\frac{288}{5}}{\frac{288}{125}} when ± is plus. Add -\frac{1152}{25} to \frac{288}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5
Divide \frac{288}{25} by \frac{288}{125} by multiplying \frac{288}{25} by the reciprocal of \frac{288}{125}.
x=-\frac{\frac{2592}{25}}{\frac{288}{125}}
Now solve the equation x=\frac{-\frac{1152}{25}±\frac{288}{5}}{\frac{288}{125}} when ± is minus. Subtract \frac{288}{5} from -\frac{1152}{25} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-45
Divide -\frac{2592}{25} by \frac{288}{125} by multiplying -\frac{2592}{25} by the reciprocal of \frac{288}{125}.
x=5 x=-45
The equation is now solved.
\frac{16}{5}x^{2}=\frac{1296}{5}-\frac{1152}{25}x+\frac{256}{125}x^{2}
Use the distributive property to multiply \frac{36}{5}-\frac{16}{25}x by 36-\frac{16}{5}x and combine like terms.
\frac{16}{5}x^{2}+\frac{1152}{25}x=\frac{1296}{5}+\frac{256}{125}x^{2}
Add \frac{1152}{25}x to both sides.
\frac{16}{5}x^{2}+\frac{1152}{25}x-\frac{256}{125}x^{2}=\frac{1296}{5}
Subtract \frac{256}{125}x^{2} from both sides.
\frac{144}{125}x^{2}+\frac{1152}{25}x=\frac{1296}{5}
Combine \frac{16}{5}x^{2} and -\frac{256}{125}x^{2} to get \frac{144}{125}x^{2}.
\frac{\frac{144}{125}x^{2}+\frac{1152}{25}x}{\frac{144}{125}}=\frac{\frac{1296}{5}}{\frac{144}{125}}
Divide both sides of the equation by \frac{144}{125}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{1152}{25}}{\frac{144}{125}}x=\frac{\frac{1296}{5}}{\frac{144}{125}}
Dividing by \frac{144}{125} undoes the multiplication by \frac{144}{125}.
x^{2}+40x=\frac{\frac{1296}{5}}{\frac{144}{125}}
Divide \frac{1152}{25} by \frac{144}{125} by multiplying \frac{1152}{25} by the reciprocal of \frac{144}{125}.
x^{2}+40x=225
Divide \frac{1296}{5} by \frac{144}{125} by multiplying \frac{1296}{5} by the reciprocal of \frac{144}{125}.
x^{2}+40x+20^{2}=225+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=225+400
Square 20.
x^{2}+40x+400=625
Add 225 to 400.
\left(x+20\right)^{2}=625
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{625}
Take the square root of both sides of the equation.
x+20=25 x+20=-25
Simplify.
x=5 x=-45
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}