Solve for a
a\geq 85
Share
Copied to clipboard
\frac{16}{5}a+\frac{37}{10}\times 25+\frac{37}{10}\left(-1\right)a\leq 50
Use the distributive property to multiply \frac{37}{10} by 25-a.
\frac{16}{5}a+\frac{37\times 25}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Express \frac{37}{10}\times 25 as a single fraction.
\frac{16}{5}a+\frac{925}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Multiply 37 and 25 to get 925.
\frac{16}{5}a+\frac{185}{2}+\frac{37}{10}\left(-1\right)a\leq 50
Reduce the fraction \frac{925}{10} to lowest terms by extracting and canceling out 5.
\frac{16}{5}a+\frac{185}{2}-\frac{37}{10}a\leq 50
Multiply \frac{37}{10} and -1 to get -\frac{37}{10}.
-\frac{1}{2}a+\frac{185}{2}\leq 50
Combine \frac{16}{5}a and -\frac{37}{10}a to get -\frac{1}{2}a.
-\frac{1}{2}a\leq 50-\frac{185}{2}
Subtract \frac{185}{2} from both sides.
-\frac{1}{2}a\leq \frac{100}{2}-\frac{185}{2}
Convert 50 to fraction \frac{100}{2}.
-\frac{1}{2}a\leq \frac{100-185}{2}
Since \frac{100}{2} and \frac{185}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}a\leq -\frac{85}{2}
Subtract 185 from 100 to get -85.
a\geq -\frac{85}{2}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}. Since -\frac{1}{2} is negative, the inequality direction is changed.
a\geq \frac{-85\left(-2\right)}{2}
Express -\frac{85}{2}\left(-2\right) as a single fraction.
a\geq \frac{170}{2}
Multiply -85 and -2 to get 170.
a\geq 85
Divide 170 by 2 to get 85.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}