Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\frac{16}{5}a+\frac{37}{10}\times 25+\frac{37}{10}\left(-1\right)a\leq 50
Use the distributive property to multiply \frac{37}{10} by 25-a.
\frac{16}{5}a+\frac{37\times 25}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Express \frac{37}{10}\times 25 as a single fraction.
\frac{16}{5}a+\frac{925}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Multiply 37 and 25 to get 925.
\frac{16}{5}a+\frac{185}{2}+\frac{37}{10}\left(-1\right)a\leq 50
Reduce the fraction \frac{925}{10} to lowest terms by extracting and canceling out 5.
\frac{16}{5}a+\frac{185}{2}-\frac{37}{10}a\leq 50
Multiply \frac{37}{10} and -1 to get -\frac{37}{10}.
-\frac{1}{2}a+\frac{185}{2}\leq 50
Combine \frac{16}{5}a and -\frac{37}{10}a to get -\frac{1}{2}a.
-\frac{1}{2}a\leq 50-\frac{185}{2}
Subtract \frac{185}{2} from both sides.
-\frac{1}{2}a\leq \frac{100}{2}-\frac{185}{2}
Convert 50 to fraction \frac{100}{2}.
-\frac{1}{2}a\leq \frac{100-185}{2}
Since \frac{100}{2} and \frac{185}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}a\leq -\frac{85}{2}
Subtract 185 from 100 to get -85.
a\geq -\frac{85}{2}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}. Since -\frac{1}{2} is negative, the inequality direction is changed.
a\geq \frac{-85\left(-2\right)}{2}
Express -\frac{85}{2}\left(-2\right) as a single fraction.
a\geq \frac{170}{2}
Multiply -85 and -2 to get 170.
a\geq 85
Divide 170 by 2 to get 85.