Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
11x-\frac{2}{7}=-\frac{30}{7}+\frac{16}{3}x+\frac{7}{3}x
Combine \frac{16}{3}x and \frac{17}{3}x to get 11x.
11x-\frac{2}{7}=-\frac{30}{7}+\frac{23}{3}x
Combine \frac{16}{3}x and \frac{7}{3}x to get \frac{23}{3}x.
11x-\frac{2}{7}-\frac{23}{3}x=-\frac{30}{7}
Subtract \frac{23}{3}x from both sides.
\frac{10}{3}x-\frac{2}{7}=-\frac{30}{7}
Combine 11x and -\frac{23}{3}x to get \frac{10}{3}x.
\frac{10}{3}x=-\frac{30}{7}+\frac{2}{7}
Add \frac{2}{7} to both sides.
\frac{10}{3}x=\frac{-30+2}{7}
Since -\frac{30}{7} and \frac{2}{7} have the same denominator, add them by adding their numerators.
\frac{10}{3}x=\frac{-28}{7}
Add -30 and 2 to get -28.
\frac{10}{3}x=-4
Divide -28 by 7 to get -4.
x=-4\times \frac{3}{10}
Multiply both sides by \frac{3}{10}, the reciprocal of \frac{10}{3}.
x=\frac{-4\times 3}{10}
Express -4\times \frac{3}{10} as a single fraction.
x=\frac{-12}{10}
Multiply -4 and 3 to get -12.
x=-\frac{6}{5}
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}