Solve for x
x=-2
x=4
Graph
Quiz
Quadratic Equation
5 problems similar to:
\frac { 16 } { 2 x + 16 } - \frac { 2 } { 2 - 2 x } = 1
Share
Copied to clipboard
\left(x-1\right)\times 16-\left(-\left(8+x\right)\times 2\right)=2\left(x-1\right)\left(x+8\right)
Variable x cannot be equal to any of the values -8,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+8\right), the least common multiple of 2x+16,2-2x.
16x-16-\left(-\left(8+x\right)\times 2\right)=2\left(x-1\right)\left(x+8\right)
Use the distributive property to multiply x-1 by 16.
16x-16-\left(-2\left(8+x\right)\right)=2\left(x-1\right)\left(x+8\right)
Multiply -1 and 2 to get -2.
16x-16-\left(-16-2x\right)=2\left(x-1\right)\left(x+8\right)
Use the distributive property to multiply -2 by 8+x.
16x-16+16+2x=2\left(x-1\right)\left(x+8\right)
To find the opposite of -16-2x, find the opposite of each term.
16x+2x=2\left(x-1\right)\left(x+8\right)
Add -16 and 16 to get 0.
18x=2\left(x-1\right)\left(x+8\right)
Combine 16x and 2x to get 18x.
18x=\left(2x-2\right)\left(x+8\right)
Use the distributive property to multiply 2 by x-1.
18x=2x^{2}+14x-16
Use the distributive property to multiply 2x-2 by x+8 and combine like terms.
18x-2x^{2}=14x-16
Subtract 2x^{2} from both sides.
18x-2x^{2}-14x=-16
Subtract 14x from both sides.
4x-2x^{2}=-16
Combine 18x and -14x to get 4x.
4x-2x^{2}+16=0
Add 16 to both sides.
-2x^{2}+4x+16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-2\right)\times 16}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 4 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-2\right)\times 16}}{2\left(-2\right)}
Square 4.
x=\frac{-4±\sqrt{16+8\times 16}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-4±\sqrt{16+128}}{2\left(-2\right)}
Multiply 8 times 16.
x=\frac{-4±\sqrt{144}}{2\left(-2\right)}
Add 16 to 128.
x=\frac{-4±12}{2\left(-2\right)}
Take the square root of 144.
x=\frac{-4±12}{-4}
Multiply 2 times -2.
x=\frac{8}{-4}
Now solve the equation x=\frac{-4±12}{-4} when ± is plus. Add -4 to 12.
x=-2
Divide 8 by -4.
x=-\frac{16}{-4}
Now solve the equation x=\frac{-4±12}{-4} when ± is minus. Subtract 12 from -4.
x=4
Divide -16 by -4.
x=-2 x=4
The equation is now solved.
\left(x-1\right)\times 16-\left(-\left(8+x\right)\times 2\right)=2\left(x-1\right)\left(x+8\right)
Variable x cannot be equal to any of the values -8,1 since division by zero is not defined. Multiply both sides of the equation by 2\left(x-1\right)\left(x+8\right), the least common multiple of 2x+16,2-2x.
16x-16-\left(-\left(8+x\right)\times 2\right)=2\left(x-1\right)\left(x+8\right)
Use the distributive property to multiply x-1 by 16.
16x-16-\left(-2\left(8+x\right)\right)=2\left(x-1\right)\left(x+8\right)
Multiply -1 and 2 to get -2.
16x-16-\left(-16-2x\right)=2\left(x-1\right)\left(x+8\right)
Use the distributive property to multiply -2 by 8+x.
16x-16+16+2x=2\left(x-1\right)\left(x+8\right)
To find the opposite of -16-2x, find the opposite of each term.
16x+2x=2\left(x-1\right)\left(x+8\right)
Add -16 and 16 to get 0.
18x=2\left(x-1\right)\left(x+8\right)
Combine 16x and 2x to get 18x.
18x=\left(2x-2\right)\left(x+8\right)
Use the distributive property to multiply 2 by x-1.
18x=2x^{2}+14x-16
Use the distributive property to multiply 2x-2 by x+8 and combine like terms.
18x-2x^{2}=14x-16
Subtract 2x^{2} from both sides.
18x-2x^{2}-14x=-16
Subtract 14x from both sides.
4x-2x^{2}=-16
Combine 18x and -14x to get 4x.
-2x^{2}+4x=-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2x^{2}+4x}{-2}=-\frac{16}{-2}
Divide both sides by -2.
x^{2}+\frac{4}{-2}x=-\frac{16}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}-2x=-\frac{16}{-2}
Divide 4 by -2.
x^{2}-2x=8
Divide -16 by -2.
x^{2}-2x+1=8+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=9
Add 8 to 1.
\left(x-1\right)^{2}=9
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-1=3 x-1=-3
Simplify.
x=4 x=-2
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}