Solve for y
y=\frac{17z}{16}+\frac{1}{256}
z\neq -\frac{1}{272}
Solve for z
z=\frac{16y}{17}-\frac{1}{272}
y\neq 0
Share
Copied to clipboard
256y=272z+1
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 272y, the least common multiple of 17,y,272y.
\frac{256y}{256}=\frac{272z+1}{256}
Divide both sides by 256.
y=\frac{272z+1}{256}
Dividing by 256 undoes the multiplication by 256.
y=\frac{17z}{16}+\frac{1}{256}
Divide 272z+1 by 256.
y=\frac{17z}{16}+\frac{1}{256}\text{, }y\neq 0
Variable y cannot be equal to 0.
256y=272z+1
Multiply both sides of the equation by 272y, the least common multiple of 17,y,272y.
272z+1=256y
Swap sides so that all variable terms are on the left hand side.
272z=256y-1
Subtract 1 from both sides.
\frac{272z}{272}=\frac{256y-1}{272}
Divide both sides by 272.
z=\frac{256y-1}{272}
Dividing by 272 undoes the multiplication by 272.
z=\frac{16y}{17}-\frac{1}{272}
Divide 256y-1 by 272.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}