Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{16}{5}x\times \frac{-10}{3}
Fraction \frac{16}{-5} can be rewritten as -\frac{16}{5} by extracting the negative sign.
-\frac{16}{5}x\left(-\frac{10}{3}\right)
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{-16\left(-10\right)}{5\times 3}x
Multiply -\frac{16}{5} times -\frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{160}{15}x
Do the multiplications in the fraction \frac{-16\left(-10\right)}{5\times 3}.
\frac{32}{3}x
Reduce the fraction \frac{160}{15} to lowest terms by extracting and canceling out 5.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{16}{5}x\times \frac{-10}{3})
Fraction \frac{16}{-5} can be rewritten as -\frac{16}{5} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{16}{5}x\left(-\frac{10}{3}\right))
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-16\left(-10\right)}{5\times 3}x)
Multiply -\frac{16}{5} times -\frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{160}{15}x)
Do the multiplications in the fraction \frac{-16\left(-10\right)}{5\times 3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{32}{3}x)
Reduce the fraction \frac{160}{15} to lowest terms by extracting and canceling out 5.
\frac{32}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{32}{3}x^{0}
Subtract 1 from 1.
\frac{32}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{32}{3}
For any term t, t\times 1=t and 1t=t.