Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{16}{\sqrt{5}-2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{\left(\sqrt{5}-2\sqrt{2}\right)\left(\sqrt{5}+2\sqrt{2}\right)}
Rationalize the denominator of \frac{16}{\sqrt{5}-2\sqrt{2}} by multiplying numerator and denominator by \sqrt{5}+2\sqrt{2}.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{\left(\sqrt{5}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(\sqrt{5}-2\sqrt{2}\right)\left(\sqrt{5}+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{5-\left(-2\sqrt{2}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{5-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{5-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{5-4\times 2}
The square of \sqrt{2} is 2.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{5-8}
Multiply 4 and 2 to get 8.
\frac{16\left(\sqrt{5}+2\sqrt{2}\right)}{-3}
Subtract 8 from 5 to get -3.
\frac{16\sqrt{5}+32\sqrt{2}}{-3}
Use the distributive property to multiply 16 by \sqrt{5}+2\sqrt{2}.