Evaluate
\frac{1597}{987}\approx 1.618034448
Factor
\frac{1597}{3 \cdot 7 \cdot 47} = 1\frac{610}{987} = 1.618034447821682
Share
Copied to clipboard
\begin{array}{l}\phantom{987)}\phantom{1}\\987\overline{)1597}\\\end{array}
Use the 1^{st} digit 1 from dividend 1597
\begin{array}{l}\phantom{987)}0\phantom{2}\\987\overline{)1597}\\\end{array}
Since 1 is less than 987, use the next digit 5 from dividend 1597 and add 0 to the quotient
\begin{array}{l}\phantom{987)}0\phantom{3}\\987\overline{)1597}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1597
\begin{array}{l}\phantom{987)}00\phantom{4}\\987\overline{)1597}\\\end{array}
Since 15 is less than 987, use the next digit 9 from dividend 1597 and add 0 to the quotient
\begin{array}{l}\phantom{987)}00\phantom{5}\\987\overline{)1597}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1597
\begin{array}{l}\phantom{987)}000\phantom{6}\\987\overline{)1597}\\\end{array}
Since 159 is less than 987, use the next digit 7 from dividend 1597 and add 0 to the quotient
\begin{array}{l}\phantom{987)}000\phantom{7}\\987\overline{)1597}\\\end{array}
Use the 4^{th} digit 7 from dividend 1597
\begin{array}{l}\phantom{987)}0001\phantom{8}\\987\overline{)1597}\\\phantom{987)}\underline{\phantom{9}987\phantom{}}\\\phantom{987)9}610\\\end{array}
Find closest multiple of 987 to 1597. We see that 1 \times 987 = 987 is the nearest. Now subtract 987 from 1597 to get reminder 610. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }610
Since 610 is less than 987, stop the division. The reminder is 610. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}