Evaluate
\frac{15468767}{845605}\approx 18.293135684
Factor
\frac{41 \cdot 377287}{5 \cdot 131 \cdot 1291} = 18\frac{247877}{845605} = 18.293135683918614
Share
Copied to clipboard
\begin{array}{l}\phantom{845605)}\phantom{1}\\845605\overline{)15468767}\\\end{array}
Use the 1^{st} digit 1 from dividend 15468767
\begin{array}{l}\phantom{845605)}0\phantom{2}\\845605\overline{)15468767}\\\end{array}
Since 1 is less than 845605, use the next digit 5 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}0\phantom{3}\\845605\overline{)15468767}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15468767
\begin{array}{l}\phantom{845605)}00\phantom{4}\\845605\overline{)15468767}\\\end{array}
Since 15 is less than 845605, use the next digit 4 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}00\phantom{5}\\845605\overline{)15468767}\\\end{array}
Use the 3^{rd} digit 4 from dividend 15468767
\begin{array}{l}\phantom{845605)}000\phantom{6}\\845605\overline{)15468767}\\\end{array}
Since 154 is less than 845605, use the next digit 6 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}000\phantom{7}\\845605\overline{)15468767}\\\end{array}
Use the 4^{th} digit 6 from dividend 15468767
\begin{array}{l}\phantom{845605)}0000\phantom{8}\\845605\overline{)15468767}\\\end{array}
Since 1546 is less than 845605, use the next digit 8 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}0000\phantom{9}\\845605\overline{)15468767}\\\end{array}
Use the 5^{th} digit 8 from dividend 15468767
\begin{array}{l}\phantom{845605)}00000\phantom{10}\\845605\overline{)15468767}\\\end{array}
Since 15468 is less than 845605, use the next digit 7 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}00000\phantom{11}\\845605\overline{)15468767}\\\end{array}
Use the 6^{th} digit 7 from dividend 15468767
\begin{array}{l}\phantom{845605)}000000\phantom{12}\\845605\overline{)15468767}\\\end{array}
Since 154687 is less than 845605, use the next digit 6 from dividend 15468767 and add 0 to the quotient
\begin{array}{l}\phantom{845605)}000000\phantom{13}\\845605\overline{)15468767}\\\end{array}
Use the 7^{th} digit 6 from dividend 15468767
\begin{array}{l}\phantom{845605)}0000001\phantom{14}\\845605\overline{)15468767}\\\phantom{845605)}\underline{\phantom{9}845605\phantom{9}}\\\phantom{845605)9}701271\\\end{array}
Find closest multiple of 845605 to 1546876. We see that 1 \times 845605 = 845605 is the nearest. Now subtract 845605 from 1546876 to get reminder 701271. Add 1 to quotient.
\begin{array}{l}\phantom{845605)}0000001\phantom{15}\\845605\overline{)15468767}\\\phantom{845605)}\underline{\phantom{9}845605\phantom{9}}\\\phantom{845605)9}7012717\\\end{array}
Use the 8^{th} digit 7 from dividend 15468767
\begin{array}{l}\phantom{845605)}00000018\phantom{16}\\845605\overline{)15468767}\\\phantom{845605)}\underline{\phantom{9}845605\phantom{9}}\\\phantom{845605)9}7012717\\\phantom{845605)}\underline{\phantom{9}6764840\phantom{}}\\\phantom{845605)99}247877\\\end{array}
Find closest multiple of 845605 to 7012717. We see that 8 \times 845605 = 6764840 is the nearest. Now subtract 6764840 from 7012717 to get reminder 247877. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }247877
Since 247877 is less than 845605, stop the division. The reminder is 247877. The topmost line 00000018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}