Evaluate
\frac{151}{28}\approx 5.392857143
Factor
\frac{151}{2 ^ {2} \cdot 7} = 5\frac{11}{28} = 5.392857142857143
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)151}\\\end{array}
Use the 1^{st} digit 1 from dividend 151
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)151}\\\end{array}
Since 1 is less than 28, use the next digit 5 from dividend 151 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)151}\\\end{array}
Use the 2^{nd} digit 5 from dividend 151
\begin{array}{l}\phantom{28)}00\phantom{4}\\28\overline{)151}\\\end{array}
Since 15 is less than 28, use the next digit 1 from dividend 151 and add 0 to the quotient
\begin{array}{l}\phantom{28)}00\phantom{5}\\28\overline{)151}\\\end{array}
Use the 3^{rd} digit 1 from dividend 151
\begin{array}{l}\phantom{28)}005\phantom{6}\\28\overline{)151}\\\phantom{28)}\underline{\phantom{}140\phantom{}}\\\phantom{28)9}11\\\end{array}
Find closest multiple of 28 to 151. We see that 5 \times 28 = 140 is the nearest. Now subtract 140 from 151 to get reminder 11. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }11
Since 11 is less than 28, stop the division. The reminder is 11. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}