Solve for a
a=15
Quiz
Linear Equation
5 problems similar to:
\frac { 1500 } { a } + \frac { 1200 a } { 8 a + 240 } = 150
Share
Copied to clipboard
\left(8a+240\right)\times 1500+a\times 1200a=1200a\left(a+30\right)
Variable a cannot be equal to any of the values -30,0 since division by zero is not defined. Multiply both sides of the equation by 8a\left(a+30\right), the least common multiple of a,8a+240.
12000a+360000+a\times 1200a=1200a\left(a+30\right)
Use the distributive property to multiply 8a+240 by 1500.
12000a+360000+a^{2}\times 1200=1200a\left(a+30\right)
Multiply a and a to get a^{2}.
12000a+360000+a^{2}\times 1200=1200a^{2}+36000a
Use the distributive property to multiply 1200a by a+30.
12000a+360000+a^{2}\times 1200-1200a^{2}=36000a
Subtract 1200a^{2} from both sides.
12000a+360000=36000a
Combine a^{2}\times 1200 and -1200a^{2} to get 0.
12000a+360000-36000a=0
Subtract 36000a from both sides.
-24000a+360000=0
Combine 12000a and -36000a to get -24000a.
-24000a=-360000
Subtract 360000 from both sides. Anything subtracted from zero gives its negation.
a=\frac{-360000}{-24000}
Divide both sides by -24000.
a=15
Divide -360000 by -24000 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}