Solve for x
x=\frac{5y}{3\left(10-y\right)}
y\neq 15\text{ and }y\neq 10\text{ and }y\neq 0
Solve for y
y=\frac{30x}{3x+5}
x\neq 0\text{ and }x\neq -\frac{5}{3}\text{ and }x\neq -5
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 150 x } { y ( 5 + x ) } = 5 + \frac { 10 x } { 5 + x }
Share
Copied to clipboard
150x=y\left(x+5\right)\times 5+y\times 10x
Variable x cannot be equal to -5 since division by zero is not defined. Multiply both sides of the equation by y\left(x+5\right), the least common multiple of y\left(5+x\right),5+x.
150x=\left(yx+5y\right)\times 5+y\times 10x
Use the distributive property to multiply y by x+5.
150x=5yx+25y+y\times 10x
Use the distributive property to multiply yx+5y by 5.
150x=15yx+25y
Combine 5yx and y\times 10x to get 15yx.
150x-15yx=25y
Subtract 15yx from both sides.
\left(150-15y\right)x=25y
Combine all terms containing x.
\frac{\left(150-15y\right)x}{150-15y}=\frac{25y}{150-15y}
Divide both sides by 150-15y.
x=\frac{25y}{150-15y}
Dividing by 150-15y undoes the multiplication by 150-15y.
x=\frac{5y}{3\left(10-y\right)}
Divide 25y by 150-15y.
x=\frac{5y}{3\left(10-y\right)}\text{, }x\neq -5
Variable x cannot be equal to -5.
150x=y\left(x+5\right)\times 5+y\times 10x
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y\left(x+5\right), the least common multiple of y\left(5+x\right),5+x.
150x=\left(yx+5y\right)\times 5+y\times 10x
Use the distributive property to multiply y by x+5.
150x=5yx+25y+y\times 10x
Use the distributive property to multiply yx+5y by 5.
150x=15yx+25y
Combine 5yx and y\times 10x to get 15yx.
15yx+25y=150x
Swap sides so that all variable terms are on the left hand side.
\left(15x+25\right)y=150x
Combine all terms containing y.
\frac{\left(15x+25\right)y}{15x+25}=\frac{150x}{15x+25}
Divide both sides by 15x+25.
y=\frac{150x}{15x+25}
Dividing by 15x+25 undoes the multiplication by 15x+25.
y=\frac{30x}{3x+5}
Divide 150x by 15x+25.
y=\frac{30x}{3x+5}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}