Evaluate
\frac{25}{7}\approx 3.571428571
Factor
\frac{5 ^ {2}}{7} = 3\frac{4}{7} = 3.5714285714285716
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)150}\\\end{array}
Use the 1^{st} digit 1 from dividend 150
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)150}\\\end{array}
Since 1 is less than 42, use the next digit 5 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)150}\\\end{array}
Use the 2^{nd} digit 5 from dividend 150
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)150}\\\end{array}
Since 15 is less than 42, use the next digit 0 from dividend 150 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)150}\\\end{array}
Use the 3^{rd} digit 0 from dividend 150
\begin{array}{l}\phantom{42)}003\phantom{6}\\42\overline{)150}\\\phantom{42)}\underline{\phantom{}126\phantom{}}\\\phantom{42)9}24\\\end{array}
Find closest multiple of 42 to 150. We see that 3 \times 42 = 126 is the nearest. Now subtract 126 from 150 to get reminder 24. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }24
Since 24 is less than 42, stop the division. The reminder is 24. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}