Evaluate
\frac{20y^{11}}{9x^{6}}
Expand
\frac{20y^{11}}{9x^{6}}
Share
Copied to clipboard
\frac{15y\times 3^{-3}\left(x^{4}\right)^{-3}\left(y^{-2}\right)^{-3}}{\left(2x^{3}y^{2}\right)^{-2}}
Expand \left(3x^{4}y^{-2}\right)^{-3}.
\frac{15y\times 3^{-3}x^{-12}\left(y^{-2}\right)^{-3}}{\left(2x^{3}y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{15y\times 3^{-3}x^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{15y\times \frac{1}{27}x^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{5}{9}yx^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
Multiply 15 and \frac{1}{27} to get \frac{5}{9}.
\frac{\frac{5}{9}y^{7}x^{-12}}{\left(2x^{3}y^{2}\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}\left(x^{3}\right)^{-2}\left(y^{2}\right)^{-2}}
Expand \left(2x^{3}y^{2}\right)^{-2}.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}x^{-6}\left(y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}x^{-6}y^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{5}{9}y^{7}x^{-12}}{\frac{1}{4}x^{-6}y^{-4}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{5}{9}x^{-12}y^{11}}{\frac{1}{4}x^{-6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{5}{9}y^{11}}{\frac{1}{4}x^{6}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{15y\times 3^{-3}\left(x^{4}\right)^{-3}\left(y^{-2}\right)^{-3}}{\left(2x^{3}y^{2}\right)^{-2}}
Expand \left(3x^{4}y^{-2}\right)^{-3}.
\frac{15y\times 3^{-3}x^{-12}\left(y^{-2}\right)^{-3}}{\left(2x^{3}y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\frac{15y\times 3^{-3}x^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply -2 and -3 to get 6.
\frac{15y\times \frac{1}{27}x^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{5}{9}yx^{-12}y^{6}}{\left(2x^{3}y^{2}\right)^{-2}}
Multiply 15 and \frac{1}{27} to get \frac{5}{9}.
\frac{\frac{5}{9}y^{7}x^{-12}}{\left(2x^{3}y^{2}\right)^{-2}}
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}\left(x^{3}\right)^{-2}\left(y^{2}\right)^{-2}}
Expand \left(2x^{3}y^{2}\right)^{-2}.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}x^{-6}\left(y^{2}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{5}{9}y^{7}x^{-12}}{2^{-2}x^{-6}y^{-4}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{5}{9}y^{7}x^{-12}}{\frac{1}{4}x^{-6}y^{-4}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{5}{9}x^{-12}y^{11}}{\frac{1}{4}x^{-6}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{5}{9}y^{11}}{\frac{1}{4}x^{6}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}