Solve for x
x<-\frac{17}{10}
Graph
Share
Copied to clipboard
3x-\frac{3}{5}+4<x
Divide each term of 15x-3 by 5 to get 3x-\frac{3}{5}.
3x-\frac{3}{5}+\frac{20}{5}<x
Convert 4 to fraction \frac{20}{5}.
3x+\frac{-3+20}{5}<x
Since -\frac{3}{5} and \frac{20}{5} have the same denominator, add them by adding their numerators.
3x+\frac{17}{5}<x
Add -3 and 20 to get 17.
3x+\frac{17}{5}-x<0
Subtract x from both sides.
2x+\frac{17}{5}<0
Combine 3x and -x to get 2x.
2x<-\frac{17}{5}
Subtract \frac{17}{5} from both sides. Anything subtracted from zero gives its negation.
x<\frac{-\frac{17}{5}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
x<\frac{-17}{5\times 2}
Express \frac{-\frac{17}{5}}{2} as a single fraction.
x<\frac{-17}{10}
Multiply 5 and 2 to get 10.
x<-\frac{17}{10}
Fraction \frac{-17}{10} can be rewritten as -\frac{17}{10} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}