Solve for c
c=\frac{5w\left(x+2\right)}{24m^{2}}
m\neq 0\text{ and }w\neq 0\text{ and }x\neq -2
Solve for m (complex solution)
m=-\frac{c^{-\frac{1}{2}}\sqrt{w}\sqrt{30\left(x+2\right)}}{12}
m=\frac{c^{-\frac{1}{2}}\sqrt{w}\sqrt{30\left(x+2\right)}}{12}\text{, }x\neq -2\text{ and }w\neq 0\text{ and }c\neq 0
Solve for m
m=\frac{\sqrt{\frac{30w\left(x+2\right)}{c}}}{12}
m=-\frac{\sqrt{\frac{30w\left(x+2\right)}{c}}}{12}\text{, }\left(c<0\text{ and }x<-2\text{ and }w>0\right)\text{ or }\left(c<0\text{ and }w<0\text{ and }x>-2\right)\text{ or }\left(c>0\text{ and }w>0\text{ and }x>-2\right)\text{ or }\left(c>0\text{ and }x<-2\text{ and }w<0\right)
Graph
Share
Copied to clipboard
\left(x+2\right)\times 15w=18cm\times 4m
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 18cm\left(x+2\right), the least common multiple of 18cm,x+2.
\left(15x+30\right)w=18cm\times 4m
Use the distributive property to multiply x+2 by 15.
15xw+30w=18cm\times 4m
Use the distributive property to multiply 15x+30 by w.
15xw+30w=18cm^{2}\times 4
Multiply m and m to get m^{2}.
15xw+30w=72cm^{2}
Multiply 18 and 4 to get 72.
72cm^{2}=15xw+30w
Swap sides so that all variable terms are on the left hand side.
72m^{2}c=15wx+30w
The equation is in standard form.
\frac{72m^{2}c}{72m^{2}}=\frac{15w\left(x+2\right)}{72m^{2}}
Divide both sides by 72m^{2}.
c=\frac{15w\left(x+2\right)}{72m^{2}}
Dividing by 72m^{2} undoes the multiplication by 72m^{2}.
c=\frac{5w\left(x+2\right)}{24m^{2}}
Divide 15w\left(2+x\right) by 72m^{2}.
c=\frac{5w\left(x+2\right)}{24m^{2}}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}