Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{15b}{3-b}+\frac{8b}{b^{2}-9}\times \frac{31}{4}
Add 10 and 21 to get 31.
\frac{15b}{3-b}+\frac{8b\times 31}{\left(b^{2}-9\right)\times 4}
Multiply \frac{8b}{b^{2}-9} times \frac{31}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{b^{2}-9}
Cancel out 4 in both numerator and denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-b and \left(b-3\right)\left(b+3\right) is \left(b-3\right)\left(b+3\right). Multiply \frac{15b}{3-b} times \frac{-\left(b+3\right)}{-\left(b+3\right)}.
\frac{15b\left(-1\right)\left(b+3\right)+2\times 31b}{\left(b-3\right)\left(b+3\right)}
Since \frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)} and \frac{2\times 31b}{\left(b-3\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{-15b^{2}-45b+62b}{\left(b-3\right)\left(b+3\right)}
Do the multiplications in 15b\left(-1\right)\left(b+3\right)+2\times 31b.
\frac{-15b^{2}+17b}{\left(b-3\right)\left(b+3\right)}
Combine like terms in -15b^{2}-45b+62b.
\frac{-15b^{2}+17b}{b^{2}-9}
Expand \left(b-3\right)\left(b+3\right).
\frac{15b}{3-b}+\frac{8b}{b^{2}-9}\times \frac{31}{4}
Add 10 and 21 to get 31.
\frac{15b}{3-b}+\frac{8b\times 31}{\left(b^{2}-9\right)\times 4}
Multiply \frac{8b}{b^{2}-9} times \frac{31}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{b^{2}-9}
Cancel out 4 in both numerator and denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-b and \left(b-3\right)\left(b+3\right) is \left(b-3\right)\left(b+3\right). Multiply \frac{15b}{3-b} times \frac{-\left(b+3\right)}{-\left(b+3\right)}.
\frac{15b\left(-1\right)\left(b+3\right)+2\times 31b}{\left(b-3\right)\left(b+3\right)}
Since \frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)} and \frac{2\times 31b}{\left(b-3\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{-15b^{2}-45b+62b}{\left(b-3\right)\left(b+3\right)}
Do the multiplications in 15b\left(-1\right)\left(b+3\right)+2\times 31b.
\frac{-15b^{2}+17b}{\left(b-3\right)\left(b+3\right)}
Combine like terms in -15b^{2}-45b+62b.
\frac{-15b^{2}+17b}{b^{2}-9}
Expand \left(b-3\right)\left(b+3\right).