Evaluate
\frac{b\left(15b-17\right)}{9-b^{2}}
Expand
-\frac{15b^{2}-17b}{b^{2}-9}
Share
Copied to clipboard
\frac{15b}{3-b}+\frac{8b}{b^{2}-9}\times \frac{31}{4}
Add 10 and 21 to get 31.
\frac{15b}{3-b}+\frac{8b\times 31}{\left(b^{2}-9\right)\times 4}
Multiply \frac{8b}{b^{2}-9} times \frac{31}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{b^{2}-9}
Cancel out 4 in both numerator and denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-b and \left(b-3\right)\left(b+3\right) is \left(b-3\right)\left(b+3\right). Multiply \frac{15b}{3-b} times \frac{-\left(b+3\right)}{-\left(b+3\right)}.
\frac{15b\left(-1\right)\left(b+3\right)+2\times 31b}{\left(b-3\right)\left(b+3\right)}
Since \frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)} and \frac{2\times 31b}{\left(b-3\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{-15b^{2}-45b+62b}{\left(b-3\right)\left(b+3\right)}
Do the multiplications in 15b\left(-1\right)\left(b+3\right)+2\times 31b.
\frac{-15b^{2}+17b}{\left(b-3\right)\left(b+3\right)}
Combine like terms in -15b^{2}-45b+62b.
\frac{-15b^{2}+17b}{b^{2}-9}
Expand \left(b-3\right)\left(b+3\right).
\frac{15b}{3-b}+\frac{8b}{b^{2}-9}\times \frac{31}{4}
Add 10 and 21 to get 31.
\frac{15b}{3-b}+\frac{8b\times 31}{\left(b^{2}-9\right)\times 4}
Multiply \frac{8b}{b^{2}-9} times \frac{31}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{b^{2}-9}
Cancel out 4 in both numerator and denominator.
\frac{15b}{3-b}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
Factor b^{2}-9.
\frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)}+\frac{2\times 31b}{\left(b-3\right)\left(b+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3-b and \left(b-3\right)\left(b+3\right) is \left(b-3\right)\left(b+3\right). Multiply \frac{15b}{3-b} times \frac{-\left(b+3\right)}{-\left(b+3\right)}.
\frac{15b\left(-1\right)\left(b+3\right)+2\times 31b}{\left(b-3\right)\left(b+3\right)}
Since \frac{15b\left(-1\right)\left(b+3\right)}{\left(b-3\right)\left(b+3\right)} and \frac{2\times 31b}{\left(b-3\right)\left(b+3\right)} have the same denominator, add them by adding their numerators.
\frac{-15b^{2}-45b+62b}{\left(b-3\right)\left(b+3\right)}
Do the multiplications in 15b\left(-1\right)\left(b+3\right)+2\times 31b.
\frac{-15b^{2}+17b}{\left(b-3\right)\left(b+3\right)}
Combine like terms in -15b^{2}-45b+62b.
\frac{-15b^{2}+17b}{b^{2}-9}
Expand \left(b-3\right)\left(b+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}