Evaluate
5
Factor
5
Share
Copied to clipboard
\left(15b^{5}\right)^{1}\times \frac{1}{3b^{5}}
Use the rules of exponents to simplify the expression.
15^{1}\left(b^{5}\right)^{1}\times \frac{1}{3}\times \frac{1}{b^{5}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
15^{1}\times \frac{1}{3}\left(b^{5}\right)^{1}\times \frac{1}{b^{5}}
Use the Commutative Property of Multiplication.
15^{1}\times \frac{1}{3}b^{5}b^{5\left(-1\right)}
To raise a power to another power, multiply the exponents.
15^{1}\times \frac{1}{3}b^{5}b^{-5}
Multiply 5 times -1.
15^{1}\times \frac{1}{3}b^{5-5}
To multiply powers of the same base, add their exponents.
15^{1}\times \frac{1}{3}b^{0}
Add the exponents 5 and -5.
15\times \frac{1}{3}b^{0}
Raise 15 to the power 1.
5b^{0}
Multiply 15 times \frac{1}{3}.
5\times 1
For any term t except 0, t^{0}=1.
5
For any term t, t\times 1=t and 1t=t.
\frac{15^{1}b^{5}}{3^{1}b^{5}}
Use the rules of exponents to simplify the expression.
\frac{15^{1}b^{5-5}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{15^{1}b^{0}}{3^{1}}
Subtract 5 from 5.
\frac{15^{1}}{3^{1}}
For any number a except 0, a^{0}=1.
5
Divide 15 by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}