Evaluate
\frac{14b^{2}+11}{b-6}
Expand
\frac{14b^{2}+11}{b-6}
Share
Copied to clipboard
\frac{15b^{2}+9}{b-6}+\frac{-\left(b^{2}-2\right)}{b-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-6 and 6-b is b-6. Multiply \frac{1b^{2}-2}{6-b} times \frac{-1}{-1}.
\frac{15b^{2}+9-\left(1b^{2}-2\right)}{b-6}
Since \frac{15b^{2}+9}{b-6} and \frac{-\left(b^{2}-2\right)}{b-6} have the same denominator, add them by adding their numerators.
\frac{15b^{2}+9-b^{2}+2}{b-6}
Do the multiplications in 15b^{2}+9-\left(1b^{2}-2\right).
\frac{14b^{2}+11}{b-6}
Combine like terms in 15b^{2}+9-b^{2}+2.
\frac{15b^{2}+9}{b-6}+\frac{-\left(b^{2}-2\right)}{b-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of b-6 and 6-b is b-6. Multiply \frac{1b^{2}-2}{6-b} times \frac{-1}{-1}.
\frac{15b^{2}+9-\left(1b^{2}-2\right)}{b-6}
Since \frac{15b^{2}+9}{b-6} and \frac{-\left(b^{2}-2\right)}{b-6} have the same denominator, add them by adding their numerators.
\frac{15b^{2}+9-b^{2}+2}{b-6}
Do the multiplications in 15b^{2}+9-\left(1b^{2}-2\right).
\frac{14b^{2}+11}{b-6}
Combine like terms in 15b^{2}+9-b^{2}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}