Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(15a+135\right)\left(a^{2}-2a-48\right)}{\left(5a-40\right)\left(a^{2}-81\right)}
Divide \frac{15a+135}{5a-40} by \frac{a^{2}-81}{a^{2}-2a-48} by multiplying \frac{15a+135}{5a-40} by the reciprocal of \frac{a^{2}-81}{a^{2}-2a-48}.
\frac{15\left(a-8\right)\left(a+6\right)\left(a+9\right)}{5\left(a-9\right)\left(a-8\right)\left(a+9\right)}
Factor the expressions that are not already factored.
\frac{3\left(a+6\right)}{a-9}
Cancel out 5\left(a-8\right)\left(a+9\right) in both numerator and denominator.
\frac{3a+18}{a-9}
Expand the expression.
\frac{\left(15a+135\right)\left(a^{2}-2a-48\right)}{\left(5a-40\right)\left(a^{2}-81\right)}
Divide \frac{15a+135}{5a-40} by \frac{a^{2}-81}{a^{2}-2a-48} by multiplying \frac{15a+135}{5a-40} by the reciprocal of \frac{a^{2}-81}{a^{2}-2a-48}.
\frac{15\left(a-8\right)\left(a+6\right)\left(a+9\right)}{5\left(a-9\right)\left(a-8\right)\left(a+9\right)}
Factor the expressions that are not already factored.
\frac{3\left(a+6\right)}{a-9}
Cancel out 5\left(a-8\right)\left(a+9\right) in both numerator and denominator.
\frac{3a+18}{a-9}
Expand the expression.