Evaluate
\frac{135}{4}=33.75
Factor
\frac{3 ^ {3} \cdot 5}{2 ^ {2}} = 33\frac{3}{4} = 33.75
Share
Copied to clipboard
\frac{15\left(\frac{1}{4}-1\right)}{\frac{2}{3}-1}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{15\left(\frac{1}{4}-\frac{4}{4}\right)}{\frac{2}{3}-1}
Convert 1 to fraction \frac{4}{4}.
\frac{15\times \frac{1-4}{4}}{\frac{2}{3}-1}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{15\left(-\frac{3}{4}\right)}{\frac{2}{3}-1}
Subtract 4 from 1 to get -3.
\frac{\frac{15\left(-3\right)}{4}}{\frac{2}{3}-1}
Express 15\left(-\frac{3}{4}\right) as a single fraction.
\frac{\frac{-45}{4}}{\frac{2}{3}-1}
Multiply 15 and -3 to get -45.
\frac{-\frac{45}{4}}{\frac{2}{3}-1}
Fraction \frac{-45}{4} can be rewritten as -\frac{45}{4} by extracting the negative sign.
\frac{-\frac{45}{4}}{\frac{2}{3}-\frac{3}{3}}
Convert 1 to fraction \frac{3}{3}.
\frac{-\frac{45}{4}}{\frac{2-3}{3}}
Since \frac{2}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{45}{4}}{-\frac{1}{3}}
Subtract 3 from 2 to get -1.
-\frac{45}{4}\left(-3\right)
Divide -\frac{45}{4} by -\frac{1}{3} by multiplying -\frac{45}{4} by the reciprocal of -\frac{1}{3}.
\frac{-45\left(-3\right)}{4}
Express -\frac{45}{4}\left(-3\right) as a single fraction.
\frac{135}{4}
Multiply -45 and -3 to get 135.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}