Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(100x+900\right)\times 15+\left(100x-900\right)\times 15=\left(x^{2}-81\right)\times 375
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by 100\left(x-9\right)\left(x+9\right), the least common multiple of x-9,x+9,100.
1500x+13500+\left(100x-900\right)\times 15=\left(x^{2}-81\right)\times 375
Use the distributive property to multiply 100x+900 by 15.
1500x+13500+1500x-13500=\left(x^{2}-81\right)\times 375
Use the distributive property to multiply 100x-900 by 15.
3000x+13500-13500=\left(x^{2}-81\right)\times 375
Combine 1500x and 1500x to get 3000x.
3000x=\left(x^{2}-81\right)\times 375
Subtract 13500 from 13500 to get 0.
3000x=375x^{2}-30375
Use the distributive property to multiply x^{2}-81 by 375.
3000x-375x^{2}=-30375
Subtract 375x^{2} from both sides.
3000x-375x^{2}+30375=0
Add 30375 to both sides.
-375x^{2}+3000x+30375=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-3000±\sqrt{3000^{2}-4\left(-375\right)\times 30375}}{2\left(-375\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -375 for a, 3000 for b, and 30375 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3000±\sqrt{9000000-4\left(-375\right)\times 30375}}{2\left(-375\right)}
Square 3000.
x=\frac{-3000±\sqrt{9000000+1500\times 30375}}{2\left(-375\right)}
Multiply -4 times -375.
x=\frac{-3000±\sqrt{9000000+45562500}}{2\left(-375\right)}
Multiply 1500 times 30375.
x=\frac{-3000±\sqrt{54562500}}{2\left(-375\right)}
Add 9000000 to 45562500.
x=\frac{-3000±750\sqrt{97}}{2\left(-375\right)}
Take the square root of 54562500.
x=\frac{-3000±750\sqrt{97}}{-750}
Multiply 2 times -375.
x=\frac{750\sqrt{97}-3000}{-750}
Now solve the equation x=\frac{-3000±750\sqrt{97}}{-750} when ± is plus. Add -3000 to 750\sqrt{97}.
x=4-\sqrt{97}
Divide -3000+750\sqrt{97} by -750.
x=\frac{-750\sqrt{97}-3000}{-750}
Now solve the equation x=\frac{-3000±750\sqrt{97}}{-750} when ± is minus. Subtract 750\sqrt{97} from -3000.
x=\sqrt{97}+4
Divide -3000-750\sqrt{97} by -750.
x=4-\sqrt{97} x=\sqrt{97}+4
The equation is now solved.
\left(100x+900\right)\times 15+\left(100x-900\right)\times 15=\left(x^{2}-81\right)\times 375
Variable x cannot be equal to any of the values -9,9 since division by zero is not defined. Multiply both sides of the equation by 100\left(x-9\right)\left(x+9\right), the least common multiple of x-9,x+9,100.
1500x+13500+\left(100x-900\right)\times 15=\left(x^{2}-81\right)\times 375
Use the distributive property to multiply 100x+900 by 15.
1500x+13500+1500x-13500=\left(x^{2}-81\right)\times 375
Use the distributive property to multiply 100x-900 by 15.
3000x+13500-13500=\left(x^{2}-81\right)\times 375
Combine 1500x and 1500x to get 3000x.
3000x=\left(x^{2}-81\right)\times 375
Subtract 13500 from 13500 to get 0.
3000x=375x^{2}-30375
Use the distributive property to multiply x^{2}-81 by 375.
3000x-375x^{2}=-30375
Subtract 375x^{2} from both sides.
-375x^{2}+3000x=-30375
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-375x^{2}+3000x}{-375}=-\frac{30375}{-375}
Divide both sides by -375.
x^{2}+\frac{3000}{-375}x=-\frac{30375}{-375}
Dividing by -375 undoes the multiplication by -375.
x^{2}-8x=-\frac{30375}{-375}
Divide 3000 by -375.
x^{2}-8x=81
Divide -30375 by -375.
x^{2}-8x+\left(-4\right)^{2}=81+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=81+16
Square -4.
x^{2}-8x+16=97
Add 81 to 16.
\left(x-4\right)^{2}=97
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{97}
Take the square root of both sides of the equation.
x-4=\sqrt{97} x-4=-\sqrt{97}
Simplify.
x=\sqrt{97}+4 x=4-\sqrt{97}
Add 4 to both sides of the equation.