Solve for b
b=-1
b=3
Quiz
Quadratic Equation
\frac { 15 } { 4 } + 0 = - \frac { 3 } { 4 } b ^ { 2 } + \frac { 3 } { 2 } b + 6
Share
Copied to clipboard
\frac{15}{4}=-\frac{3}{4}b^{2}+\frac{3}{2}b+6
Add \frac{15}{4} and 0 to get \frac{15}{4}.
-\frac{3}{4}b^{2}+\frac{3}{2}b+6=\frac{15}{4}
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{4}b^{2}+\frac{3}{2}b+6-\frac{15}{4}=0
Subtract \frac{15}{4} from both sides.
-\frac{3}{4}b^{2}+\frac{3}{2}b+\frac{9}{4}=0
Subtract \frac{15}{4} from 6 to get \frac{9}{4}.
b=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{3}{4}\right)\times \frac{9}{4}}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, \frac{3}{2} for b, and \frac{9}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{3}{4}\right)\times \frac{9}{4}}}{2\left(-\frac{3}{4}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
b=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+3\times \frac{9}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
b=\frac{-\frac{3}{2}±\sqrt{\frac{9+27}{4}}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times \frac{9}{4}.
b=\frac{-\frac{3}{2}±\sqrt{9}}{2\left(-\frac{3}{4}\right)}
Add \frac{9}{4} to \frac{27}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
b=\frac{-\frac{3}{2}±3}{2\left(-\frac{3}{4}\right)}
Take the square root of 9.
b=\frac{-\frac{3}{2}±3}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
b=\frac{\frac{3}{2}}{-\frac{3}{2}}
Now solve the equation b=\frac{-\frac{3}{2}±3}{-\frac{3}{2}} when ± is plus. Add -\frac{3}{2} to 3.
b=-1
Divide \frac{3}{2} by -\frac{3}{2} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{2}.
b=-\frac{\frac{9}{2}}{-\frac{3}{2}}
Now solve the equation b=\frac{-\frac{3}{2}±3}{-\frac{3}{2}} when ± is minus. Subtract 3 from -\frac{3}{2}.
b=3
Divide -\frac{9}{2} by -\frac{3}{2} by multiplying -\frac{9}{2} by the reciprocal of -\frac{3}{2}.
b=-1 b=3
The equation is now solved.
\frac{15}{4}=-\frac{3}{4}b^{2}+\frac{3}{2}b+6
Add \frac{15}{4} and 0 to get \frac{15}{4}.
-\frac{3}{4}b^{2}+\frac{3}{2}b+6=\frac{15}{4}
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{4}b^{2}+\frac{3}{2}b=\frac{15}{4}-6
Subtract 6 from both sides.
-\frac{3}{4}b^{2}+\frac{3}{2}b=-\frac{9}{4}
Subtract 6 from \frac{15}{4} to get -\frac{9}{4}.
\frac{-\frac{3}{4}b^{2}+\frac{3}{2}b}{-\frac{3}{4}}=-\frac{\frac{9}{4}}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
b^{2}+\frac{\frac{3}{2}}{-\frac{3}{4}}b=-\frac{\frac{9}{4}}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
b^{2}-2b=-\frac{\frac{9}{4}}{-\frac{3}{4}}
Divide \frac{3}{2} by -\frac{3}{4} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{4}.
b^{2}-2b=3
Divide -\frac{9}{4} by -\frac{3}{4} by multiplying -\frac{9}{4} by the reciprocal of -\frac{3}{4}.
b^{2}-2b+1=3+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-2b+1=4
Add 3 to 1.
\left(b-1\right)^{2}=4
Factor b^{2}-2b+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-1\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
b-1=2 b-1=-2
Simplify.
b=3 b=-1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}