Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{15\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-4i.
\frac{15\left(3-4i\right)}{3^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{15\left(3-4i\right)}{25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{15\times 3+15\times \left(-4i\right)}{25}
Multiply 15 times 3-4i.
\frac{45-60i}{25}
Do the multiplications in 15\times 3+15\times \left(-4i\right).
\frac{9}{5}-\frac{12}{5}i
Divide 45-60i by 25 to get \frac{9}{5}-\frac{12}{5}i.
Re(\frac{15\left(3-4i\right)}{\left(3+4i\right)\left(3-4i\right)})
Multiply both numerator and denominator of \frac{15}{3+4i} by the complex conjugate of the denominator, 3-4i.
Re(\frac{15\left(3-4i\right)}{3^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{15\left(3-4i\right)}{25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{15\times 3+15\times \left(-4i\right)}{25})
Multiply 15 times 3-4i.
Re(\frac{45-60i}{25})
Do the multiplications in 15\times 3+15\times \left(-4i\right).
Re(\frac{9}{5}-\frac{12}{5}i)
Divide 45-60i by 25 to get \frac{9}{5}-\frac{12}{5}i.
\frac{9}{5}
The real part of \frac{9}{5}-\frac{12}{5}i is \frac{9}{5}.