Solve for x
x = \frac{9}{4} = 2\frac{1}{4} = 2.25
Graph
Share
Copied to clipboard
14\left(16-7x\right)^{-1}\times \frac{15}{28}=4\times 7+2
Multiply both sides of the equation by 7.
\frac{15}{2}\left(16-7x\right)^{-1}=4\times 7+2
Multiply 14 and \frac{15}{28} to get \frac{15}{2}.
\frac{15}{2}\left(16-7x\right)^{-1}=28+2
Multiply 4 and 7 to get 28.
\frac{15}{2}\left(16-7x\right)^{-1}=30
Add 28 and 2 to get 30.
\left(16-7x\right)^{-1}=30\times \frac{2}{15}
Multiply both sides by \frac{2}{15}, the reciprocal of \frac{15}{2}.
\left(16-7x\right)^{-1}=4
Multiply 30 and \frac{2}{15} to get 4.
\frac{1}{-7x+16}=4
Reorder the terms.
1=4\left(-7x+16\right)
Variable x cannot be equal to \frac{16}{7} since division by zero is not defined. Multiply both sides of the equation by -7x+16.
1=-28x+64
Use the distributive property to multiply 4 by -7x+16.
-28x+64=1
Swap sides so that all variable terms are on the left hand side.
-28x=1-64
Subtract 64 from both sides.
-28x=-63
Subtract 64 from 1 to get -63.
x=\frac{-63}{-28}
Divide both sides by -28.
x=\frac{9}{4}
Reduce the fraction \frac{-63}{-28} to lowest terms by extracting and canceling out -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}