\frac { 15 } { 2 \cdot 1,7 - 3 } = \frac { 10 } { 4 \cdot 1,1 \cdot 5 }
Verify
false
Share
Copied to clipboard
\frac{15}{3,4-3}=\frac{10}{4\times 1,1\times 5}
Multiply 2 and 1,7 to get 3,4.
\frac{15}{0,4}=\frac{10}{4\times 1,1\times 5}
Subtract 3 from 3,4 to get 0,4.
\frac{150}{4}=\frac{10}{4\times 1,1\times 5}
Expand \frac{15}{0,4} by multiplying both numerator and the denominator by 10.
\frac{75}{2}=\frac{10}{4\times 1,1\times 5}
Reduce the fraction \frac{150}{4} to lowest terms by extracting and canceling out 2.
\frac{75}{2}=\frac{10}{4,4\times 5}
Multiply 4 and 1,1 to get 4,4.
\frac{75}{2}=\frac{10}{22}
Multiply 4,4 and 5 to get 22.
\frac{75}{2}=\frac{5}{11}
Reduce the fraction \frac{10}{22} to lowest terms by extracting and canceling out 2.
\frac{825}{22}=\frac{10}{22}
Least common multiple of 2 and 11 is 22. Convert \frac{75}{2} and \frac{5}{11} to fractions with denominator 22.
\text{false}
Compare \frac{825}{22} and \frac{10}{22}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}