Solve for r
r=\frac{16s}{15}+\frac{1}{225}
s\neq -\frac{1}{240}
Solve for s
s=\frac{15r}{16}-\frac{1}{240}
r\neq 0
Share
Copied to clipboard
225r=240s+1
Variable r cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 240r, the least common multiple of 16,r,240r.
\frac{225r}{225}=\frac{240s+1}{225}
Divide both sides by 225.
r=\frac{240s+1}{225}
Dividing by 225 undoes the multiplication by 225.
r=\frac{16s}{15}+\frac{1}{225}
Divide 240s+1 by 225.
r=\frac{16s}{15}+\frac{1}{225}\text{, }r\neq 0
Variable r cannot be equal to 0.
225r=240s+1
Multiply both sides of the equation by 240r, the least common multiple of 16,r,240r.
240s+1=225r
Swap sides so that all variable terms are on the left hand side.
240s=225r-1
Subtract 1 from both sides.
\frac{240s}{240}=\frac{225r-1}{240}
Divide both sides by 240.
s=\frac{225r-1}{240}
Dividing by 240 undoes the multiplication by 240.
s=\frac{15r}{16}-\frac{1}{240}
Divide 225r-1 by 240.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}