Evaluate
\frac{15}{14}\approx 1.071428571
Factor
\frac{3 \cdot 5}{2 \cdot 7} = 1\frac{1}{14} = 1.0714285714285714
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)15}\\\end{array}
Use the 1^{st} digit 1 from dividend 15
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)15}\\\end{array}
Since 1 is less than 14, use the next digit 5 from dividend 15 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)15}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15
\begin{array}{l}\phantom{14)}01\phantom{4}\\14\overline{)15}\\\phantom{14)}\underline{\phantom{}14\phantom{}}\\\phantom{14)9}1\\\end{array}
Find closest multiple of 14 to 15. We see that 1 \times 14 = 14 is the nearest. Now subtract 14 from 15 to get reminder 1. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }1
Since 1 is less than 14, stop the division. The reminder is 1. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}