Solve for h
\left\{\begin{matrix}h=\frac{xy+60}{30mp\left(x+4\right)}\text{, }&x\neq -4\text{ and }p\neq 0\text{ and }m\neq 0\\h\in \mathrm{R}\text{, }&x=-\frac{60}{y}\text{ and }y\neq 0\text{ and }\left(p=0\text{ or }m=0\right)\text{ and }y\neq 15\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\frac{xy+60}{30hp\left(x+4\right)}\text{, }&x\neq -4\text{ and }h\neq 0\text{ and }p\neq 0\\m\in \mathrm{R}\text{, }&x=-\frac{60}{y}\text{ and }y\neq 0\text{ and }\left(h=0\text{ or }p=0\right)\text{ and }y\neq 15\end{matrix}\right.
Graph
Share
Copied to clipboard
15\times 4+xy=30mph\left(x+4\right)
Multiply both sides of the equation by x+4.
60+xy=30mph\left(x+4\right)
Multiply 15 and 4 to get 60.
60+xy=30mphx+120pmh
Use the distributive property to multiply 30mph by x+4.
30mphx+120pmh=60+xy
Swap sides so that all variable terms are on the left hand side.
\left(30mpx+120pm\right)h=60+xy
Combine all terms containing h.
\left(30mpx+120mp\right)h=xy+60
The equation is in standard form.
\frac{\left(30mpx+120mp\right)h}{30mpx+120mp}=\frac{xy+60}{30mpx+120mp}
Divide both sides by 30xmp+120pm.
h=\frac{xy+60}{30mpx+120mp}
Dividing by 30xmp+120pm undoes the multiplication by 30xmp+120pm.
h=\frac{xy+60}{30mp\left(x+4\right)}
Divide 60+xy by 30xmp+120pm.
15\times 4+xy=30mph\left(x+4\right)
Multiply both sides of the equation by x+4.
60+xy=30mph\left(x+4\right)
Multiply 15 and 4 to get 60.
60+xy=30mphx+120pmh
Use the distributive property to multiply 30mph by x+4.
30mphx+120pmh=60+xy
Swap sides so that all variable terms are on the left hand side.
\left(30phx+120ph\right)m=60+xy
Combine all terms containing m.
\left(30hpx+120hp\right)m=xy+60
The equation is in standard form.
\frac{\left(30hpx+120hp\right)m}{30hpx+120hp}=\frac{xy+60}{30hpx+120hp}
Divide both sides by 30xph+120hp.
m=\frac{xy+60}{30hpx+120hp}
Dividing by 30xph+120hp undoes the multiplication by 30xph+120hp.
m=\frac{xy+60}{30hp\left(x+4\right)}
Divide 60+xy by 30xph+120hp.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}