Solve for n
n=\frac{200x^{2}}{15^{t^{2}}}
x\neq 0
Solve for t
t=\sqrt{\frac{\ln(\frac{x^{2}}{n})+\ln(200)}{\ln(15)}}
t=-\sqrt{\frac{\ln(\frac{x^{2}}{n})+\ln(200)}{\ln(15)}}\text{, }x\neq 0\text{ and }n>0\text{ and }|x|\geq \frac{\sqrt{2n}}{20}
Graph
Share
Copied to clipboard
n\times 15^{t^{2}}=10x^{2}\times 20
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10nx^{2}, the least common multiple of 10x^{2},n.
n\times 15^{t^{2}}=200x^{2}
Multiply 10 and 20 to get 200.
15^{t^{2}}n=200x^{2}
The equation is in standard form.
\frac{15^{t^{2}}n}{15^{t^{2}}}=\frac{200x^{2}}{15^{t^{2}}}
Divide both sides by 15^{t^{2}}.
n=\frac{200x^{2}}{15^{t^{2}}}
Dividing by 15^{t^{2}} undoes the multiplication by 15^{t^{2}}.
n=\frac{200x^{2}}{15^{t^{2}}}\text{, }n\neq 0
Variable n cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}