Solve for t
t = \frac{375}{7} = 53\frac{4}{7} \approx 53.571428571
Share
Copied to clipboard
\frac{\left(15+t\right)\times 2}{145-t}=\frac{3}{2}
Divide 15+t by \frac{145-t}{2} by multiplying 15+t by the reciprocal of \frac{145-t}{2}.
\frac{30+2t}{145-t}=\frac{3}{2}
Use the distributive property to multiply 15+t by 2.
-2\left(30+2t\right)=3\left(t-145\right)
Variable t cannot be equal to 145 since division by zero is not defined. Multiply both sides of the equation by 2\left(t-145\right), the least common multiple of 145-t,2.
-60-4t=3\left(t-145\right)
Use the distributive property to multiply -2 by 30+2t.
-60-4t=3t-435
Use the distributive property to multiply 3 by t-145.
-60-4t-3t=-435
Subtract 3t from both sides.
-60-7t=-435
Combine -4t and -3t to get -7t.
-7t=-435+60
Add 60 to both sides.
-7t=-375
Add -435 and 60 to get -375.
t=\frac{-375}{-7}
Divide both sides by -7.
t=\frac{375}{7}
Fraction \frac{-375}{-7} can be simplified to \frac{375}{7} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}