Evaluate
\frac{49}{4}=12.25
Factor
\frac{7 ^ {2}}{2 ^ {2}} = 12\frac{1}{4} = 12.25
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)147}\\\end{array}
Use the 1^{st} digit 1 from dividend 147
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)147}\\\end{array}
Since 1 is less than 12, use the next digit 4 from dividend 147 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)147}\\\end{array}
Use the 2^{nd} digit 4 from dividend 147
\begin{array}{l}\phantom{12)}01\phantom{4}\\12\overline{)147}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 14. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 14 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{12)}01\phantom{5}\\12\overline{)147}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}27\\\end{array}
Use the 3^{rd} digit 7 from dividend 147
\begin{array}{l}\phantom{12)}012\phantom{6}\\12\overline{)147}\\\phantom{12)}\underline{\phantom{}12\phantom{9}}\\\phantom{12)9}27\\\phantom{12)}\underline{\phantom{9}24\phantom{}}\\\phantom{12)99}3\\\end{array}
Find closest multiple of 12 to 27. We see that 2 \times 12 = 24 is the nearest. Now subtract 24 from 27 to get reminder 3. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }3
Since 3 is less than 12, stop the division. The reminder is 3. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}