Evaluate
\frac{18}{11}\approx 1.636363636
Factor
\frac{2 \cdot 3 ^ {2}}{11} = 1\frac{7}{11} = 1.6363636363636365
Share
Copied to clipboard
\begin{array}{l}\phantom{88)}\phantom{1}\\88\overline{)144}\\\end{array}
Use the 1^{st} digit 1 from dividend 144
\begin{array}{l}\phantom{88)}0\phantom{2}\\88\overline{)144}\\\end{array}
Since 1 is less than 88, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{88)}0\phantom{3}\\88\overline{)144}\\\end{array}
Use the 2^{nd} digit 4 from dividend 144
\begin{array}{l}\phantom{88)}00\phantom{4}\\88\overline{)144}\\\end{array}
Since 14 is less than 88, use the next digit 4 from dividend 144 and add 0 to the quotient
\begin{array}{l}\phantom{88)}00\phantom{5}\\88\overline{)144}\\\end{array}
Use the 3^{rd} digit 4 from dividend 144
\begin{array}{l}\phantom{88)}001\phantom{6}\\88\overline{)144}\\\phantom{88)}\underline{\phantom{9}88\phantom{}}\\\phantom{88)9}56\\\end{array}
Find closest multiple of 88 to 144. We see that 1 \times 88 = 88 is the nearest. Now subtract 88 from 144 to get reminder 56. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }56
Since 56 is less than 88, stop the division. The reminder is 56. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}