Solve for x
x=8
Graph
Share
Copied to clipboard
\left(x+4\right)\times 144=12\times 18x
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 216\left(x+4\right), the least common multiple of 216,18x+72.
144x+576=12\times 18x
Use the distributive property to multiply x+4 by 144.
144x+576=216x
Multiply 12 and 18 to get 216.
144x+576-216x=0
Subtract 216x from both sides.
-72x+576=0
Combine 144x and -216x to get -72x.
-72x=-576
Subtract 576 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-576}{-72}
Divide both sides by -72.
x=8
Divide -576 by -72 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}