Solve for a
a=\frac{325b}{36}
b\neq 0
Solve for b
b=\frac{36a}{325}
a\neq 0
Share
Copied to clipboard
144a=1300b
Multiply both sides of the equation by b.
\frac{144a}{144}=\frac{1300b}{144}
Divide both sides by 144.
a=\frac{1300b}{144}
Dividing by 144 undoes the multiplication by 144.
a=\frac{325b}{36}
Divide 1300b by 144.
144a=1300b
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b.
1300b=144a
Swap sides so that all variable terms are on the left hand side.
\frac{1300b}{1300}=\frac{144a}{1300}
Divide both sides by 1300.
b=\frac{144a}{1300}
Dividing by 1300 undoes the multiplication by 1300.
b=\frac{36a}{325}
Divide 144a by 1300.
b=\frac{36a}{325}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}