Evaluate
\frac{707}{118}\approx 5.991525424
Factor
\frac{7 \cdot 101}{2 \cdot 59} = 5\frac{117}{118} = 5.991525423728813
Share
Copied to clipboard
\begin{array}{l}\phantom{236)}\phantom{1}\\236\overline{)1414}\\\end{array}
Use the 1^{st} digit 1 from dividend 1414
\begin{array}{l}\phantom{236)}0\phantom{2}\\236\overline{)1414}\\\end{array}
Since 1 is less than 236, use the next digit 4 from dividend 1414 and add 0 to the quotient
\begin{array}{l}\phantom{236)}0\phantom{3}\\236\overline{)1414}\\\end{array}
Use the 2^{nd} digit 4 from dividend 1414
\begin{array}{l}\phantom{236)}00\phantom{4}\\236\overline{)1414}\\\end{array}
Since 14 is less than 236, use the next digit 1 from dividend 1414 and add 0 to the quotient
\begin{array}{l}\phantom{236)}00\phantom{5}\\236\overline{)1414}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1414
\begin{array}{l}\phantom{236)}000\phantom{6}\\236\overline{)1414}\\\end{array}
Since 141 is less than 236, use the next digit 4 from dividend 1414 and add 0 to the quotient
\begin{array}{l}\phantom{236)}000\phantom{7}\\236\overline{)1414}\\\end{array}
Use the 4^{th} digit 4 from dividend 1414
\begin{array}{l}\phantom{236)}0005\phantom{8}\\236\overline{)1414}\\\phantom{236)}\underline{\phantom{}1180\phantom{}}\\\phantom{236)9}234\\\end{array}
Find closest multiple of 236 to 1414. We see that 5 \times 236 = 1180 is the nearest. Now subtract 1180 from 1414 to get reminder 234. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }234
Since 234 is less than 236, stop the division. The reminder is 234. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}