Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-4\right)\times 140+x\times 140=4x\left(x-4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x,x-4.
140x-560+x\times 140=4x\left(x-4\right)
Use the distributive property to multiply x-4 by 140.
280x-560=4x\left(x-4\right)
Combine 140x and x\times 140 to get 280x.
280x-560=4x^{2}-16x
Use the distributive property to multiply 4x by x-4.
280x-560-4x^{2}=-16x
Subtract 4x^{2} from both sides.
280x-560-4x^{2}+16x=0
Add 16x to both sides.
296x-560-4x^{2}=0
Combine 280x and 16x to get 296x.
-4x^{2}+296x-560=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-296±\sqrt{296^{2}-4\left(-4\right)\left(-560\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 296 for b, and -560 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-296±\sqrt{87616-4\left(-4\right)\left(-560\right)}}{2\left(-4\right)}
Square 296.
x=\frac{-296±\sqrt{87616+16\left(-560\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-296±\sqrt{87616-8960}}{2\left(-4\right)}
Multiply 16 times -560.
x=\frac{-296±\sqrt{78656}}{2\left(-4\right)}
Add 87616 to -8960.
x=\frac{-296±8\sqrt{1229}}{2\left(-4\right)}
Take the square root of 78656.
x=\frac{-296±8\sqrt{1229}}{-8}
Multiply 2 times -4.
x=\frac{8\sqrt{1229}-296}{-8}
Now solve the equation x=\frac{-296±8\sqrt{1229}}{-8} when ± is plus. Add -296 to 8\sqrt{1229}.
x=37-\sqrt{1229}
Divide -296+8\sqrt{1229} by -8.
x=\frac{-8\sqrt{1229}-296}{-8}
Now solve the equation x=\frac{-296±8\sqrt{1229}}{-8} when ± is minus. Subtract 8\sqrt{1229} from -296.
x=\sqrt{1229}+37
Divide -296-8\sqrt{1229} by -8.
x=37-\sqrt{1229} x=\sqrt{1229}+37
The equation is now solved.
\left(x-4\right)\times 140+x\times 140=4x\left(x-4\right)
Variable x cannot be equal to any of the values 0,4 since division by zero is not defined. Multiply both sides of the equation by x\left(x-4\right), the least common multiple of x,x-4.
140x-560+x\times 140=4x\left(x-4\right)
Use the distributive property to multiply x-4 by 140.
280x-560=4x\left(x-4\right)
Combine 140x and x\times 140 to get 280x.
280x-560=4x^{2}-16x
Use the distributive property to multiply 4x by x-4.
280x-560-4x^{2}=-16x
Subtract 4x^{2} from both sides.
280x-560-4x^{2}+16x=0
Add 16x to both sides.
296x-560-4x^{2}=0
Combine 280x and 16x to get 296x.
296x-4x^{2}=560
Add 560 to both sides. Anything plus zero gives itself.
-4x^{2}+296x=560
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+296x}{-4}=\frac{560}{-4}
Divide both sides by -4.
x^{2}+\frac{296}{-4}x=\frac{560}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-74x=\frac{560}{-4}
Divide 296 by -4.
x^{2}-74x=-140
Divide 560 by -4.
x^{2}-74x+\left(-37\right)^{2}=-140+\left(-37\right)^{2}
Divide -74, the coefficient of the x term, by 2 to get -37. Then add the square of -37 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-74x+1369=-140+1369
Square -37.
x^{2}-74x+1369=1229
Add -140 to 1369.
\left(x-37\right)^{2}=1229
Factor x^{2}-74x+1369. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-37\right)^{2}}=\sqrt{1229}
Take the square root of both sides of the equation.
x-37=\sqrt{1229} x-37=-\sqrt{1229}
Simplify.
x=\sqrt{1229}+37 x=37-\sqrt{1229}
Add 37 to both sides of the equation.