Solve for x (complex solution)
x\in \mathrm{C}
Solve for x
x\in \mathrm{R}
Graph
Share
Copied to clipboard
14x-49-\left(2-8x\right)=22x-51
Multiply both sides of the equation by 14.
14x-49-2-\left(-8x\right)=22x-51
To find the opposite of 2-8x, find the opposite of each term.
14x-49-2+8x=22x-51
The opposite of -8x is 8x.
14x-51+8x=22x-51
Subtract 2 from -49 to get -51.
22x-51=22x-51
Combine 14x and 8x to get 22x.
22x-51-22x=-51
Subtract 22x from both sides.
-51=-51
Combine 22x and -22x to get 0.
\text{true}
Compare -51 and -51.
x\in \mathrm{C}
This is true for any x.
14x-49-\left(2-8x\right)=22x-51
Multiply both sides of the equation by 14.
14x-49-2-\left(-8x\right)=22x-51
To find the opposite of 2-8x, find the opposite of each term.
14x-49-2+8x=22x-51
The opposite of -8x is 8x.
14x-51+8x=22x-51
Subtract 2 from -49 to get -51.
22x-51=22x-51
Combine 14x and 8x to get 22x.
22x-51-22x=-51
Subtract 22x from both sides.
-51=-51
Combine 22x and -22x to get 0.
\text{true}
Compare -51 and -51.
x\in \mathrm{R}
This is true for any x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}