Evaluate
\frac{7\times \left(\frac{y}{x}\right)^{3}}{3}
Differentiate w.r.t. x
-\frac{7y^{3}}{x^{4}}
Share
Copied to clipboard
\frac{14^{1}x^{2}y^{7}}{6^{1}x^{5}y^{4}}
Use the rules of exponents to simplify the expression.
\frac{14^{1}}{6^{1}}x^{2-5}y^{7-4}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{14^{1}}{6^{1}}x^{-3}y^{7-4}
Subtract 5 from 2.
\frac{14^{1}}{6^{1}}\times \frac{1}{x^{3}}y^{3}
Subtract 4 from 7.
\frac{7}{3}\times \frac{1}{x^{3}}y^{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{14y^{7}}{6y^{4}}x^{2-5})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{7y^{3}}{3}x^{-3})
Do the arithmetic.
-3\times \frac{7y^{3}}{3}x^{-3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(-7y^{3}\right)x^{-4}
Do the arithmetic.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}