Evaluate
\frac{n\left(15n-14\right)}{3-n}
Expand
\frac{14n-15n^{2}}{n-3}
Share
Copied to clipboard
\frac{14n}{n-3}+\frac{12n^{2}\left(15-5n\right)}{\left(3-n\right)^{2}\times 4}
Multiply \frac{12n^{2}}{\left(3-n\right)^{2}} times \frac{15-5n}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14n}{n-3}+\frac{3\left(-5n+15\right)n^{2}}{\left(-n+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{14n\left(n-3\right)}{\left(n-3\right)^{2}}+\frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-3 and \left(-n+3\right)^{2} is \left(n-3\right)^{2}. Multiply \frac{14n}{n-3} times \frac{n-3}{n-3}.
\frac{14n\left(n-3\right)+3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
Since \frac{14n\left(n-3\right)}{\left(n-3\right)^{2}} and \frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{14n^{2}-42n-15n^{3}+45n^{2}}{\left(n-3\right)^{2}}
Do the multiplications in 14n\left(n-3\right)+3\left(-5n+15\right)n^{2}.
\frac{59n^{2}-42n-15n^{3}}{\left(n-3\right)^{2}}
Combine like terms in 14n^{2}-42n-15n^{3}+45n^{2}.
\frac{59n^{2}-42n-15n^{3}}{n^{2}-6n+9}
Expand \left(n-3\right)^{2}.
\frac{14n}{n-3}+\frac{12n^{2}\left(15-5n\right)}{\left(3-n\right)^{2}\times 4}
Multiply \frac{12n^{2}}{\left(3-n\right)^{2}} times \frac{15-5n}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14n}{n-3}+\frac{3\left(-5n+15\right)n^{2}}{\left(-n+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{14n\left(n-3\right)}{\left(n-3\right)^{2}}+\frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-3 and \left(-n+3\right)^{2} is \left(n-3\right)^{2}. Multiply \frac{14n}{n-3} times \frac{n-3}{n-3}.
\frac{14n\left(n-3\right)+3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
Since \frac{14n\left(n-3\right)}{\left(n-3\right)^{2}} and \frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{14n^{2}-42n-15n^{3}+45n^{2}}{\left(n-3\right)^{2}}
Do the multiplications in 14n\left(n-3\right)+3\left(-5n+15\right)n^{2}.
\frac{59n^{2}-42n-15n^{3}}{\left(n-3\right)^{2}}
Combine like terms in 14n^{2}-42n-15n^{3}+45n^{2}.
\frac{59n^{2}-42n-15n^{3}}{n^{2}-6n+9}
Expand \left(n-3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}