Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{14n}{n-3}+\frac{12n^{2}\left(15-5n\right)}{\left(3-n\right)^{2}\times 4}
Multiply \frac{12n^{2}}{\left(3-n\right)^{2}} times \frac{15-5n}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14n}{n-3}+\frac{3\left(-5n+15\right)n^{2}}{\left(-n+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{14n\left(n-3\right)}{\left(n-3\right)^{2}}+\frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-3 and \left(-n+3\right)^{2} is \left(n-3\right)^{2}. Multiply \frac{14n}{n-3} times \frac{n-3}{n-3}.
\frac{14n\left(n-3\right)+3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
Since \frac{14n\left(n-3\right)}{\left(n-3\right)^{2}} and \frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{14n^{2}-42n-15n^{3}+45n^{2}}{\left(n-3\right)^{2}}
Do the multiplications in 14n\left(n-3\right)+3\left(-5n+15\right)n^{2}.
\frac{59n^{2}-42n-15n^{3}}{\left(n-3\right)^{2}}
Combine like terms in 14n^{2}-42n-15n^{3}+45n^{2}.
\frac{59n^{2}-42n-15n^{3}}{n^{2}-6n+9}
Expand \left(n-3\right)^{2}.
\frac{14n}{n-3}+\frac{12n^{2}\left(15-5n\right)}{\left(3-n\right)^{2}\times 4}
Multiply \frac{12n^{2}}{\left(3-n\right)^{2}} times \frac{15-5n}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{14n}{n-3}+\frac{3\left(-5n+15\right)n^{2}}{\left(-n+3\right)^{2}}
Cancel out 4 in both numerator and denominator.
\frac{14n\left(n-3\right)}{\left(n-3\right)^{2}}+\frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of n-3 and \left(-n+3\right)^{2} is \left(n-3\right)^{2}. Multiply \frac{14n}{n-3} times \frac{n-3}{n-3}.
\frac{14n\left(n-3\right)+3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}}
Since \frac{14n\left(n-3\right)}{\left(n-3\right)^{2}} and \frac{3\left(-5n+15\right)n^{2}}{\left(n-3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{14n^{2}-42n-15n^{3}+45n^{2}}{\left(n-3\right)^{2}}
Do the multiplications in 14n\left(n-3\right)+3\left(-5n+15\right)n^{2}.
\frac{59n^{2}-42n-15n^{3}}{\left(n-3\right)^{2}}
Combine like terms in 14n^{2}-42n-15n^{3}+45n^{2}.
\frac{59n^{2}-42n-15n^{3}}{n^{2}-6n+9}
Expand \left(n-3\right)^{2}.