Solve for x
x=\frac{225\times 3^{\frac{2}{3}}-75\sqrt[3]{3}-877}{82}\approx -6.30670558
Graph
Share
Copied to clipboard
14-x=\left(x+11\right)\sqrt[3]{81}
Variable x cannot be equal to -11 since division by zero is not defined. Multiply both sides of the equation by x+11.
14-x=x\sqrt[3]{81}+11\sqrt[3]{81}
Use the distributive property to multiply x+11 by \sqrt[3]{81}.
14-x-x\sqrt[3]{81}=11\sqrt[3]{81}
Subtract x\sqrt[3]{81} from both sides.
-x-x\sqrt[3]{81}=11\sqrt[3]{81}-14
Subtract 14 from both sides.
\left(-1-\sqrt[3]{81}\right)x=11\sqrt[3]{81}-14
Combine all terms containing x.
\left(-\sqrt[3]{81}-1\right)x=11\sqrt[3]{81}-14
The equation is in standard form.
\frac{\left(-\sqrt[3]{81}-1\right)x}{-\sqrt[3]{81}-1}=\frac{33\sqrt[3]{3}-14}{-\sqrt[3]{81}-1}
Divide both sides by -1-\sqrt[3]{81}.
x=\frac{33\sqrt[3]{3}-14}{-\sqrt[3]{81}-1}
Dividing by -1-\sqrt[3]{81} undoes the multiplication by -1-\sqrt[3]{81}.
x=-\frac{\left(33\sqrt[3]{3}-14\right)\left(9\times 3^{\frac{2}{3}}+1-3\sqrt[3]{3}\right)}{82}
Divide 33\sqrt[3]{3}-14 by -1-\sqrt[3]{81}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}