Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{14-\frac{\left(x-10\right)\left(x-3\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}}{\left(x+3\right)\left(x-10\right)}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}-7x-30\right)}{\left(x+2\right)\left(x^{2}+4x+3\right)}.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\frac{14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Since \frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14x^{2}+28x+14x+28-x^{2}+3x+10x-30}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Do the multiplications in 14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right).
\frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Combine like terms in 14x^{2}+28x+14x+28-x^{2}+3x+10x-30.
\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-10\right)}
Express \frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)} as a single fraction.
\frac{13x^{2}+55x-2}{\left(x^{2}+3x+2\right)\left(x+3\right)\left(x-10\right)}
Use the distributive property to multiply x+1 by x+2 and combine like terms.
\frac{13x^{2}+55x-2}{\left(x^{3}+6x^{2}+11x+6\right)\left(x-10\right)}
Use the distributive property to multiply x^{2}+3x+2 by x+3 and combine like terms.
\frac{13x^{2}+55x-2}{x^{4}-4x^{3}-49x^{2}-104x-60}
Use the distributive property to multiply x^{3}+6x^{2}+11x+6 by x-10 and combine like terms.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}}{\left(x+3\right)\left(x-10\right)}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}-7x-30\right)}{\left(x+2\right)\left(x^{2}+4x+3\right)}.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\frac{14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Since \frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14x^{2}+28x+14x+28-x^{2}+3x+10x-30}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Do the multiplications in 14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right).
\frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Combine like terms in 14x^{2}+28x+14x+28-x^{2}+3x+10x-30.
\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-10\right)}
Express \frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)} as a single fraction.
\frac{13x^{2}+55x-2}{\left(x^{2}+3x+2\right)\left(x+3\right)\left(x-10\right)}
Use the distributive property to multiply x+1 by x+2 and combine like terms.
\frac{13x^{2}+55x-2}{\left(x^{3}+6x^{2}+11x+6\right)\left(x-10\right)}
Use the distributive property to multiply x^{2}+3x+2 by x+3 and combine like terms.
\frac{13x^{2}+55x-2}{x^{4}-4x^{3}-49x^{2}-104x-60}
Use the distributive property to multiply x^{3}+6x^{2}+11x+6 by x-10 and combine like terms.