Evaluate
\frac{13x^{2}+55x-2}{\left(x-10\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Expand
\frac{13x^{2}+55x-2}{\left(x-10\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)}
Graph
Share
Copied to clipboard
\frac{14-\frac{\left(x-10\right)\left(x-3\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}}{\left(x+3\right)\left(x-10\right)}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}-7x-30\right)}{\left(x+2\right)\left(x^{2}+4x+3\right)}.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\frac{14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Since \frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14x^{2}+28x+14x+28-x^{2}+3x+10x-30}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Do the multiplications in 14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right).
\frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Combine like terms in 14x^{2}+28x+14x+28-x^{2}+3x+10x-30.
\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-10\right)}
Express \frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)} as a single fraction.
\frac{13x^{2}+55x-2}{\left(x^{2}+3x+2\right)\left(x+3\right)\left(x-10\right)}
Use the distributive property to multiply x+1 by x+2 and combine like terms.
\frac{13x^{2}+55x-2}{\left(x^{3}+6x^{2}+11x+6\right)\left(x-10\right)}
Use the distributive property to multiply x^{2}+3x+2 by x+3 and combine like terms.
\frac{13x^{2}+55x-2}{x^{4}-4x^{3}-49x^{2}-104x-60}
Use the distributive property to multiply x^{3}+6x^{2}+11x+6 by x-10 and combine like terms.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)\left(x+3\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}}{\left(x+3\right)\left(x-10\right)}
Factor the expressions that are not already factored in \frac{\left(x-3\right)\left(x^{2}-7x-30\right)}{\left(x+2\right)\left(x^{2}+4x+3\right)}.
\frac{14-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Cancel out x+3 in both numerator and denominator.
\frac{\frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}-\frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 14 times \frac{\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}.
\frac{\frac{14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Since \frac{14\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)} and \frac{\left(x-10\right)\left(x-3\right)}{\left(x+1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14x^{2}+28x+14x+28-x^{2}+3x+10x-30}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Do the multiplications in 14\left(x+1\right)\left(x+2\right)-\left(x-10\right)\left(x-3\right).
\frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)}
Combine like terms in 14x^{2}+28x+14x+28-x^{2}+3x+10x-30.
\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x-10\right)}
Express \frac{\frac{13x^{2}+55x-2}{\left(x+1\right)\left(x+2\right)}}{\left(x+3\right)\left(x-10\right)} as a single fraction.
\frac{13x^{2}+55x-2}{\left(x^{2}+3x+2\right)\left(x+3\right)\left(x-10\right)}
Use the distributive property to multiply x+1 by x+2 and combine like terms.
\frac{13x^{2}+55x-2}{\left(x^{3}+6x^{2}+11x+6\right)\left(x-10\right)}
Use the distributive property to multiply x^{2}+3x+2 by x+3 and combine like terms.
\frac{13x^{2}+55x-2}{x^{4}-4x^{3}-49x^{2}-104x-60}
Use the distributive property to multiply x^{3}+6x^{2}+11x+6 by x-10 and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}