Solve for a_2 (complex solution)
\left\{\begin{matrix}a_{2}=-\frac{2\left(3a_{1}-14\right)}{42-11b}\text{, }&b\neq \frac{42}{11}\\a_{2}\in \mathrm{C}\text{, }&a_{1}=\frac{14}{3}\text{ and }b=\frac{42}{11}\end{matrix}\right.
Solve for a_1
a_{1}=\frac{11a_{2}b}{6}-7a_{2}+\frac{14}{3}
Solve for a_2
\left\{\begin{matrix}a_{2}=-\frac{2\left(3a_{1}-14\right)}{42-11b}\text{, }&b\neq \frac{42}{11}\\a_{2}\in \mathrm{R}\text{, }&a_{1}=\frac{14}{3}\text{ and }b=\frac{42}{11}\end{matrix}\right.
Share
Copied to clipboard
14\left(a_{1}+a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Multiply both sides of the equation by 2.
14\left(2a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Use the distributive property to multiply 14 by 2a_{1}+3a_{2}.
28a_{1}+42a_{2}-11\left(2a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-22a_{1}-11ba_{2}=28
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+42a_{2}-11ba_{2}=28
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
42a_{2}-11ba_{2}=28-6a_{1}
Subtract 6a_{1} from both sides.
\left(42-11b\right)a_{2}=28-6a_{1}
Combine all terms containing a_{2}.
\frac{\left(42-11b\right)a_{2}}{42-11b}=\frac{28-6a_{1}}{42-11b}
Divide both sides by 42-11b.
a_{2}=\frac{28-6a_{1}}{42-11b}
Dividing by 42-11b undoes the multiplication by 42-11b.
a_{2}=\frac{2\left(14-3a_{1}\right)}{42-11b}
Divide 28-6a_{1} by 42-11b.
14\left(a_{1}+a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Multiply both sides of the equation by 2.
14\left(2a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Use the distributive property to multiply 14 by 2a_{1}+3a_{2}.
28a_{1}+42a_{2}-11\left(2a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-22a_{1}-11ba_{2}=28
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+42a_{2}-11ba_{2}=28
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
6a_{1}-11ba_{2}=28-42a_{2}
Subtract 42a_{2} from both sides.
6a_{1}=28-42a_{2}+11ba_{2}
Add 11ba_{2} to both sides.
6a_{1}=11a_{2}b-42a_{2}+28
The equation is in standard form.
\frac{6a_{1}}{6}=\frac{11a_{2}b-42a_{2}+28}{6}
Divide both sides by 6.
a_{1}=\frac{11a_{2}b-42a_{2}+28}{6}
Dividing by 6 undoes the multiplication by 6.
a_{1}=\frac{11a_{2}b}{6}-7a_{2}+\frac{14}{3}
Divide 28-42a_{2}+11ba_{2} by 6.
14\left(a_{1}+a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Multiply both sides of the equation by 2.
14\left(2a_{1}+3a_{2}\right)-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-11\left(a_{1}+a_{1}+ba_{2}\right)=28
Use the distributive property to multiply 14 by 2a_{1}+3a_{2}.
28a_{1}+42a_{2}-11\left(2a_{1}+ba_{2}\right)=28
Combine a_{1} and a_{1} to get 2a_{1}.
28a_{1}+42a_{2}-22a_{1}-11ba_{2}=28
Use the distributive property to multiply -11 by 2a_{1}+ba_{2}.
6a_{1}+42a_{2}-11ba_{2}=28
Combine 28a_{1} and -22a_{1} to get 6a_{1}.
42a_{2}-11ba_{2}=28-6a_{1}
Subtract 6a_{1} from both sides.
\left(42-11b\right)a_{2}=28-6a_{1}
Combine all terms containing a_{2}.
\frac{\left(42-11b\right)a_{2}}{42-11b}=\frac{28-6a_{1}}{42-11b}
Divide both sides by 42-11b.
a_{2}=\frac{28-6a_{1}}{42-11b}
Dividing by 42-11b undoes the multiplication by 42-11b.
a_{2}=\frac{2\left(14-3a_{1}\right)}{42-11b}
Divide 28-6a_{1} by 42-11b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}