Solve for x
x=0
Graph
Share
Copied to clipboard
\left(x-1\right)\times 14=\left(x-2\right)\times 7
Variable x cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right), the least common multiple of x-2,x-1.
14x-14=\left(x-2\right)\times 7
Use the distributive property to multiply x-1 by 14.
14x-14=7x-14
Use the distributive property to multiply x-2 by 7.
14x-14-7x=-14
Subtract 7x from both sides.
7x-14=-14
Combine 14x and -7x to get 7x.
7x=-14+14
Add 14 to both sides.
7x=0
Add -14 and 14 to get 0.
x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 7 is not equal to 0, x must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}