Solve for x
x = \frac{40}{7} = 5\frac{5}{7} \approx 5.714285714
Graph
Share
Copied to clipboard
\left(x-10\right)\times 14=-x\times 10.5
Variable x cannot be equal to any of the values 0,10 since division by zero is not defined. Multiply both sides of the equation by x\left(x-10\right), the least common multiple of x,10-x.
14x-140=-x\times 10.5
Use the distributive property to multiply x-10 by 14.
14x-140=-10.5x
Multiply -1 and 10.5 to get -10.5.
14x-140+10.5x=0
Add 10.5x to both sides.
24.5x-140=0
Combine 14x and 10.5x to get 24.5x.
24.5x=140
Add 140 to both sides. Anything plus zero gives itself.
x=\frac{140}{24.5}
Divide both sides by 24.5.
x=\frac{1400}{245}
Expand \frac{140}{24.5} by multiplying both numerator and the denominator by 10.
x=\frac{40}{7}
Reduce the fraction \frac{1400}{245} to lowest terms by extracting and canceling out 35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}