Verify
false
Share
Copied to clipboard
\frac{14\times 2}{3\left(3\times 2+1\right)}=\frac{\frac{2}{3}}{\frac{2}{5}}
Divide \frac{14}{3} by \frac{3\times 2+1}{2} by multiplying \frac{14}{3} by the reciprocal of \frac{3\times 2+1}{2}.
\frac{28}{3\left(3\times 2+1\right)}=\frac{\frac{2}{3}}{\frac{2}{5}}
Multiply 14 and 2 to get 28.
\frac{28}{3\left(6+1\right)}=\frac{\frac{2}{3}}{\frac{2}{5}}
Multiply 3 and 2 to get 6.
\frac{28}{3\times 7}=\frac{\frac{2}{3}}{\frac{2}{5}}
Add 6 and 1 to get 7.
\frac{28}{21}=\frac{\frac{2}{3}}{\frac{2}{5}}
Multiply 3 and 7 to get 21.
\frac{4}{3}=\frac{\frac{2}{3}}{\frac{2}{5}}
Reduce the fraction \frac{28}{21} to lowest terms by extracting and canceling out 7.
\frac{4}{3}=\frac{2}{3}\times \frac{5}{2}
Divide \frac{2}{3} by \frac{2}{5} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{5}.
\frac{4}{3}=\frac{2\times 5}{3\times 2}
Multiply \frac{2}{3} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{3}=\frac{5}{3}
Cancel out 2 in both numerator and denominator.
\text{false}
Compare \frac{4}{3} and \frac{5}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}